If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-16=14
We move all terms to the left:
2x^2-16-(14)=0
We add all the numbers together, and all the variables
2x^2-30=0
a = 2; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·2·(-30)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{15}}{2*2}=\frac{0-4\sqrt{15}}{4} =-\frac{4\sqrt{15}}{4} =-\sqrt{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{15}}{2*2}=\frac{0+4\sqrt{15}}{4} =\frac{4\sqrt{15}}{4} =\sqrt{15} $
| 4-1/3n=20 | | 13=x/5+7 | | (16x+12)°+(14x+28)°=180° | | 2x^-16=14 | | u/3=84 | | 6+x/4=9 | | 36=3a-12 | | 55=3y+10 | | 3x+2=10+2x | | 8+5w=-12 | | 3x+1=x+13x= | | (2•x)•6=(11•x)-(9/2) | | -50=10m+10 | | (x+21)/2=4x | | 5x^2=-1.5x | | 3x+5=1x+25 | | 7n-5=28 | | -7m-9=61 | | 3x-4=3(x+5) | | x+21/2=4x | | (7x-3)=54 | | 4t-10=90 | | 18=3(2n-5) | | 3(2x+3)=5x-10 | | 6(2/3x+9)=8x+5/13 | | 47=-7+3n | | 16=1.5r+6 | | (63)12=12/x | | 68+6x+40=180 | | 3/4m=1/8 | | 5+n/2=8 | | 224+72+x=180 |